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The p-center problem under Uncertainty
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Abstract

The problem of p-center asks finding the location of p
facilities among a set of n demand points such that the
maximum distance between any demand point and its
nearest facility is minimized. In this paper, we study
the p-center problem under uncertainty, that is, the de-
mand set is given as a set of regions, e.g., n disks. We fo-
cus on Max-p-center and Min-p-center problems as the
natural extensions of this problem in uncertainty con-
text. In these problems, we are interested in computing
the upper and lower bounds on the p-center solution for
the regions. Precisely, we wish to place a point in each
region such that the solution of p-center problem for
that placement is maximized or minimized. We present
a 1

2 -approximation and a parameterized approximation
algorithm for the Max-p-center and a parameterized ap-
proximation algorithm for the Min-p-center problem.
keywords: Facility location, p-center, Uncertainty,

Min-p-center, Max-p-center.

1 Introduction

The p-center problem is a classical facility location prob-
lem; given n demand points (customers), and the goal is
to place p facilities (centers) among them such that the
maximum distance between any demand point and its
nearest center is minimized. It was proved that the p-
center problem is NP-hard for both the Euclidean and
Manhattan metrics [10]. Some special cases of the p-
center problem are solvable in polynomial time such as
the smallest enclosing circle and its weighted demand set
variations [3, 7, 9], the two-center problem [1], the recti-
linear three-center problem [5], the p-center problem on
trees [11, 2] and the p-center problem in one dimension
[12]. The p-center problem has been also studied under
uncertainty; the location of the demand points and the
weight of demands may be considered as the uncertainty
sources. Further, in the graph variation of the problem,
the location and the weight of vertices and the length of
edges can be considered uncertain. There are different
approaches for modeling uncertainty.
Uncertainty can be modeled by continuous or dis-

crete sets. In continuous model, uncertainty is modeled

∗ataei.homa@gmail.com
†Institute for Advanced Studies in Basic Sciences (IASBS),

Zanjan, Iran, mdmonfared@iasbs.ac.ir
‡denatayebi@yahoo.com

by some regions or intervals, however, in the discrete
model, it is modeled by some discrete sets. Foul [4]
studied the Euclidean 1-center problem under uncer-
tainty in which each demand has a uniform distribution
in a given rectangle in the plane. The p-center prob-
lem was studied in one dimension such that the loca-
tion of each demand is uncertain [13]. Uncertainty is
modeled using m possible locations with a probability
distributed function for each demand point. For this
problem an O(mn logmn+n log p log n) time algorithm
was presented. Also, the 1-center problem in one di-
mension, the 1-center problem on a tree and the recti-
linear 1-center problem in the plane were studied under
this model of uncertainty [14, 16, 15]. Löffler and van
Kreveld [8] presented efficient algorithms for 1-center
problem when the uncertainty regions are modeled by
squares or disks. The goal is finding a point from each
region such that the Smallest Enclosing Circle (SEC) of
them is minimized or maximized.
The problems of p-center under uncertainty can be

formally defined as follows. Let D = {d1, d2, ..., dn} be
a set of n disks in the plane and I = {p1, p2, ..., pn} be
a placement, where pi ∈ di for i = 1, 2, ..., n. Now, I is
an input or instance of the (certain) p-center problem.
Let p−center(I) be the optimal solution of the p-center
problem for I. That is, if C = {c1, c2, ..., cp} is a solution
(set of p centers) for p-center problem, then

p− center(I) = min
C

max
pi∈I

dis(pi, C),

where dis(pi, C) is the distance between pi and the
nearest center in C. Therefor, Max-p-center and Min-
p-center are the problems of finding the crucial in-
stances Imax and Imin such that

Imax : max
I

p− center(I).

Imin : min
I

p− center(I).

In this paper, we consider both Max-p-center and
Min-p-center problems. In section 2, we present a simple
1
2 -approximation algorithm for the Max-p-center prob-
lem when the regions are disjoint disks or a set of dis-
crete points. Also, we present a 1− 2

k+4 -approximation
algorithm when the regions are k-separable. In section
3, we consider the Min-p-center problem and present
a 1 + 2

k -approximation algorithm when the regions of
uncertainty are k-separable disks or discrete points.
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Figure 1: Clustering for three facilities

2 Max-p-center Problem

In this section, we focus on the Max-p-center problem
when the regions of uncertainty are modeled as disjoint
disks or discrete sets. We present a 1

2 -approximation al-
gorithm and a parameterized approximation algorithm
for the special case of the Max-p-center problem when
the regions are well-separable.
Through this paper, we point out an assignment of

the demand points to the facility centers as a clustering .
An example of a clustering with three clusters is shown
in Figure 1. Two clustering have the same topology if
the assignments of demand points to the centers are the
same.

Theorem 1 Let D be a set of disjoint disks as the input
of the Max-p-center problem. The algorithm that places
the center of disks, has 1

2−approximation ratio.

Proof. We consider three clusters Copt, Cc−opt and C ′.
Copt is the solution of Max-p-center problem, e.g., Imax,
Cc−opt is the solution of (certain) p-center problem for
the center of disks, and C ′ is the cluster which have the
same topology with Cc−opt and the same location with
Imax. We compare Cc−opt and Copt using C ′. Since, in
the p-center problem the goal is minimizing the maxi-
mum length edge in the cluster. Let emax−opt be the
maximum distance between any demand point and its
assigned center in Copt. Actually emax−opt is the great-
est edge in the cluster Copt. Similarly, let ec−max and
e′max be the greatest edge in Cc−opt and C ′, respectively.
Figure 2 illustrates clusters Cc−opt, Copt and C ′. As the
location of demand points in C ′ and Copt are the same,
thus

emax−opt ≤ e′max. (1)

Since Cc−opt and C ′ have the same topology, if the loca-
tion of the demand points changes anywhere on disks,
the length of each edge, increases at most the amount
of sum of the radius of two (disjoint) disks. So,

e′max ≤ 2ec−max. (2)

According to inequalities 1 and 2, we have

emax−opt ≤ 2ec−max. (3)
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Figure 2: Three kinds of clusters for the Max-p-center
problem

We compare the corresponding edges in Cc−opt and
C ′. Note that, the largest edges in these two clusters
may not be the same in their clustering. It means, the
largest edge in C ′ is between disks Di and Dj , however,
it is between two other different disks in Cc−opt. We
claim that inequality 2 is established even for this case.
Suppose that in Cc−opt, e is corresponding edge with
e′max in C ′. So,

e′max ≤ 2e. (4)

ec−max is the largest edge and e is an edge in Cc−opt.
Thus,

e ≤ ec−max. (5)

According to inequalitys 4 and 5

e′max ≤ 2ec−max. (6)

Therefor, the inequality 3 is established even for this
case. Consequently, the proof is complete. □

Theorem 1 states that the set of center of disks is
1
2−approximation for Imax when the disks are disjoint.
In the following, we show that there is a nice relation-
ship between the approximation ratio of such a solu-
tion and separability factor of the disks by proposing a
parametrized approximation ratio.
Let rmax be the radius of the largest disk. A set of

disks D is called k-separable, if the minimum distance
between any pair of disks in D is at least k.rmax. For
an input such as D, separability is the maximum k such
that D is k-separable.

Theorem 2 Let D be a set of k-separable disks as the
input of the Max-p-center problem. The algorithm that
places the center of disks, has 1− 2

k+4− approximation
ratio.
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Proof. This proof is similar to the proof of Theorem 1.
We consider Cc−opt, C

′ and Copt as before. Suppose e′

is an arbitrary edge in C ′, and di and dj are two disks
connecting with e′. Let ri and rj be the radius of di
and dj , respectively, and l be the distance between di
and dj . Also, let e be the corresponding edge with e′ in
Cc−opt whose weight is l+ ri+ rj . The weight of e

′ is at
most l + 2ri + 2rj . So, the weight of an edge in Cc−opt

to the weight of its corresponding edge in C ′ is at least:

e

e′
=

l + ri + rj
l + 2ri + 2rj

≥ k.rmax + ri + rj
k.rmax + 2ri + 2rj

≥ k.rmax + rmax + rmax

k.2rmax + 2rmax + rmax
=

k + 2

k + 4
. (7)

This inequality holds for any edge in Cc−opt. So, re-
garding the inequality 7,

ec−max ≥ k + 2

k + 4
e′max, (8)

where ec−max is the edge with maximum weight in
Cc−opt and e′max is the edge with maximum weight in
C ′. Copt and C ′ have the same demand points, so,

emax−opt ≤ e′max, (9)

where emax−opt is the edge with maximum weight in
Copt. According to inequalities 8 and 9:

ec−max ≥ k + 2

k + 4
emax−opt. (10)

Therefor, the set of center of the disks is k+2
k+4 = 1 −

2
k+4− approximation solution. □
Finally, we show that the idea behind of the

parametrized approximation algorithm can be applied
for the uncertain demand regions modeled by discrete
sets with preserving the approximation ratio . We are
given a set of points for each uncertainty region, e.g.,
S = {S1, S2, ..., Sn}, e.g., I = {s1, s2, ..., sn}, where
si ∈ Si is an instance of Si, for i = 1, 2, ..., n, and
the goal is choosing a point from each set, such that
p − center(I) is maximized. Similarly, it is called, S is
k-separable if the minimum distances between any pair
of uncertainty regions are not less than k times of the
maximum distance between different instances of any
uncertain region.

Theorem 3 Let S = {S1, S2, ..., Sn} be a set of k-
separable uncertainty regions modeled by set of discrete
points. The problem of Max-p-center can be solved with
k+2
k+4 = 1− 2

k+4 approximation ratio.

Proof. The proof is similar to the proof of Theorem
2. It is sufficient to choose the solution of the 1-center
problem for each set Si, 1 ≤ i ≤ n, instead of placing the
center of the disks as the solution. Since the solution of
1-center for each set Si is a point of Si whose maximum
distance from the other points of Si is minimized, it
satisfies the necessary conditions for the proof. □

2.1 Min-p-center Problem

As explained, the goal of Min-p-center problem is find-
ing an instance Imin that minimizes p−center(I) among
the all possible instances I of the uncertainty regions.
We show again that the idea of placing center of the
uncertainty regions resulted in good approximation of
Imin, e.g., a 1 + 2

k−approximation solution when the
regions are k-separable.

Theorem 4 Let D be a set of k-separable disks as the
input of the Min-p-center problem. The algorithm that
places the center of disks is a 1 + 2

k− approximation
algorithm.

Proof. This proof is similar to the proof of Theorem 2,
however, the definition of the clusters is different. Let
Copt be the solution of Min-p-center problem, Cc−opt be
the solution of p-center for the center of the disks and C ′

be the cluster which has the same topology with Copt

and the same location of demand points with Cc−opt.
Since both Cc−opt and C ′ are the clusters on the center
of disks and Cc−opt is the optimal solution of the p-
center problem, we have

ec−max ≤ e′max (11)

where ec−max is the edge with maximum weight in
Cc−opt and e′max is the edge with maximum weight in
C ′.
We consider an arbitrary edge e′ ∈ C ′. Suppose di

and dj are two connecting disks by e′. Let ri and rj
be the radius of di and dj , respectively, and l be the
maximum distance between di and dj . In Copt, di and
dj connect to each other by an edge e which its weight
is at least l. The weight of e′ is at most l + ri + rj .
So, the weight of an edge in Copt to the weight of its
corresponding edge in C ′ is at least

e

e′
=

l

l + ri + rj
≥ k.rmax

k.rmax + ri + rj

≥ k.rmax

k.rmax + rmax + rmax
=

k

k + 2
(12)

This is established for any edge in Copt and its corre-
sponding edge in C ′. So,

emax−opt ≥
k

k + 2
e′max, (13)

where emax−opt is the edge in Copt with maximum
length. According to inequalities 11 and 13:

emax−opt ≥
k

k + 2
ec−max. (14)

Thus, the proof is complete. □
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Theorem 5 The problem Min-p-center for a set of
k−separable discrete sets can be solved with the k+2

k =
1 + 2

k approximation ratio.

Proof. Similar to the proof of Theorem 3 and Theorem
4, it is sufficient to choose the solution of discrete 1-
center problem as the instance of Min-p-center problem,
and follows the proof of Theorem 4. □

3 Conclusion and Future Work

In this paper, we defined two variations of the problem
of p-center in the uncertainty context, the Max-p-center
problem and the Min-p-center problem. In fact, these
problems are the natural extension of p-center under
uncertainty. In these problems, a set of regions, called
uncertainty regions, are as given and the goal is placing
a point in each region such that the worst and the best
case happen for p-center problem, i.e., the instances re-
sulted in maximizing or minimizing the objective value
of the p-center problem. We considered two cases for
the uncertainty regions, disjoint disks and discrete set
of points. We presented a 1

2 -approximation algorithm
and a parameterized approximation algorithm for the
Max-p-center problem and a parameterized approxima-
tion algorithm for the Min-p-center problem.
In addition to the extension of the p-center problem

under uncertainty defined in this paper, there is another
extension called Max-Regret [6]. The regret is defined
as the difference between the cost of a given solution
and the cost of the optimal solution for a particular
placement of the uncertain points. The worst case of
regret between all possible placement of the uncertain
points is called Max-Regret. So, a potential direction
for future work include consideration of Max-Regret p-
center problem.
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